skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Biswal, Shiba"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper considers the control of fluid on a solid vertical fiber, where the fiber radius is larger than the film thickness. The fluid dynamics is governed by a fourth-order partial differential equation (PDE) that models this flow regime. Fiber coating is affected by the Rayleigh–Plateau instability that leads to breakup into moving droplets. In this work, we show that control of the film profile can be achieved by dynamically altering the input flux to the fluid system that appears as a boundary condition of the PDE. We use the optimal control methodology to compute the control function. This method entails solving a minimization of a given cost function over a time horizon. We formally derive the optimal control conditions, and numerically verify that subject to the domain length constraint, the thin film equation can be controlled to generate a desired film profile with a single point of actuation. Specifically, we show that the system can be driven to both constant film profiles and traveling waves of certain speeds. 
    more » « less